Particle Markov Chain Monte Carlo
نویسنده
چکیده
Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods have emerged as the two main tools to sample from high-dimensional probability distributions. Although asymptotic convergence of MCMC algorithms is ensured under weak assumptions, the performance of these latters is unreliable when the proposal distributions used to explore the space are poorly chosen and/or if highly correlated variables are updated independently. In this thesis we propose a new Monte Carlo framework in which we build efficient high-dimensional proposal distributions using SMC methods. This allows us to design effective MCMC algorithms in complex scenarios where standard strategies fail. We demonstrate these algorithms on a number of example problems, including simulated tempering, nonlinear non-Gaussian state-space model, and protein folding.
منابع مشابه
Population Based Particle Filtering
This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...
متن کاملMarkov chain Monte Carlo methods for visual tracking
Tracking articulated figures in high dimensional state spaces require tractable methods for inferring posterior distributions of joint locations, angles, and occlusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient sampling procedures for approximating probability distributions. We apply MCMC to the domain of people tracking and investigate a general framework for sample-appr...
متن کاملInteracting Particle Markov Chain Monte Carlo
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both noninteracting PMCMC samplers and a s...
متن کاملComments on “ Particle Markov Chain
We merge in this note our two discussions about the Read Paper “Particle Markov chain Monte Carlo” (Andrieu, Doucet, and Holenstein, 2010) presented on October 16th 2009 at the Royal Statistical Society, appearing in the Journal of the Royal Statistical Society Series B. We also present a more detailed version of the ABC extension.
متن کاملInference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method
We propose a new algorithm to do posterior sampling of Kingman’s coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Mo...
متن کامل